数据思维,让决策更精准

建湖新闻网 采集侠 2019-12-31 15:23:29
浏览

定义好离散化的数据指标之后,那具体哪些用户属于什么评级呢,这就是数据分析阶段需要做的事情了。

数据分析

在数据分析中,根据问题的难易程度可以用到“决策支持”和“系统优化”的分析方法。

1. 决策支持

决策支持是通过简单的求和以及易于理解的分析模型,帮助用户做出决策,比如对比本月同比和环比用户平均消费金额,从而决定通过什么决策活动来提高本月的用户平均消费金额。比如建立一个广告投入因素和新增用户的关系模型,就能够预测投入多少广告额,能带来多少新增用户。

简单的关系模型产品经理是能通过Excel表格分析出来的,如柱状图、折线图等。

如果一项因素引发问题的因素很复杂,则需要建立一个由多个因素组成的预测模型。通过这个模型,我们可以观察模型中某个因素对整体结果造成的影响。预测模型需要用到的统计方法有交叉列表统计、统计学假设检验 、多元回归分析等,这个阶段大部分产品经理都需要求助数据分析师的帮助了。

2. 系统优化

系统优化指的是帮助用户构建让计算机执行的方案算法,常用的系统优化方法有机器学习。

相比简单模型的决策模型,系统通过机器学习方法分析出系统中更详细的因素,比如系统优化能分析出广告投入多少金额,能带来新用户的快速增长,以及广告投放中具体什么投放渠道,效果最好。

机器学习的优势在于能从数据中学习出其本身包含的模式和规律,并以此来建立模型。比今日头条,就是通过分析我们过去浏览的记录,利用机器学习建立模型,从而给我们推荐类似的内容。系统优化用到的统计方法有逻辑回归分析、聚类、主成分分析、决策树分析等。

解决对策

对于数据分析中决策支持的得出的结果,我们可以通过决策结果直接决定做或者不做某事,对于数据分析中系统优化得出的结果,我们可以在计算机上执行解决问题的决策算法。

无论什么决策结果,都需要评估执行决策结果的成本以及决策风险。

为了评估成本和风险,在做决策的时候,我们可以通过把预估的数据代入到决策模型中,进行模拟仿真,从而得出可能出现的结果。

与此同时,我们还需要不断的和周围的人传达我们整个数据分析的流程,告诉他们我们的决策是有数据依据的,这样有助于推进决策结果的推进。

#专栏作家#

青蛙王子,微信公众号:guatalk,qq:1418191947,人人都是产品经理专栏作家。

题图来自 Unsplash,基于CC0协议。